[問題] 迴歸和獨立的問題
1. X_1,...,X_n are iid in f(x)
f(x)= θ ,x=1
1-θ ,x=3
use OLSE to estimate θ.
我的作法是E(X)=3-2*θ Σ(θ-E(X))^2在對θ微分
這邊我算出來的估計量是θhat=1
感覺好奇怪...
2.Let X_1,...,X_n be a random sample from the normal distribution
n
N(μ,σ^2) where μ and σ are both unknown. Are Xbar andΣ(X_i-Xbar)^4
i=1
independent? Prove it.
這一題我是想用Lukacs(1942)證出一個sample mean 和sample variance的covariance
的想法去證可是證到一半就卡住了QQ
不曉得還有沒有別的證法呢?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 218.166.0.146
→
02/08 00:38, , 1F
02/08 00:38, 1F
→
02/08 00:40, , 2F
02/08 00:40, 2F
→
02/08 00:45, , 3F
02/08 00:45, 3F
→
02/08 00:45, , 4F
02/08 00:45, 4F
推
02/08 10:11, , 5F
02/08 10:11, 5F
→
02/08 10:12, , 6F
02/08 10:12, 6F
→
02/09 21:32, , 7F
02/09 21:32, 7F
→
02/09 22:31, , 8F
02/09 22:31, 8F
推
02/15 17:26, , 9F
02/15 17:26, 9F
推
02/20 01:35, , 10F
02/20 01:35, 10F
→
02/20 01:35, , 11F
02/20 01:35, 11F
推
02/21 04:43, , 12F
02/21 04:43, 12F
→
02/26 22:42, , 13F
02/26 22:42, 13F