[問題] 請問分離變數法和group theory 有關係嗎?

看板Physics作者 (kuromu [30mN)時間15年前 (2010/07/17 14:04), 編輯推噓0(002)
留言2則, 1人參與, 最新討論串1/2 (看更多)
程度很差 不太了解這段文字的意義(不是翻譯問題) 不知道能不能請高手解釋 感謝 ◎To put the separation method of solving PDEs in perspective,let us view it as a consequence of a symmetry of the PDE.Take the stationary Schrodinger equation HΨ=EΨ as an example with a potential V(r) depending only on the radial distance r.Then this PDE is invariant under rotaions that comprise the group SO(3).Its diagonal generator is the orbital angular momentum operator 2 Lz=-i(∂/∂φ),and its quadratic(Casimir) invariant is L .Since both commute with H,we end up with three separate eigenvalue equations: 2 HΨ=EΨ, L Ψ=l(l+1)Ψ, LzΨ=mΨ. 2 2 2 2 Upon replacing Lz in L by its eigenvalue m ,the L PDE becomes Legendre's ODE ,and similarly HΨ=EΨ becomes the radial ODE of the separation method in 2 spherical polar coordinates upon substituting the eigenvalue l(l+1) for L . ◎For cylindrical coordinates the PDE is invariant under rotations about the z-axis only,which form a subgroup of SO(3),This invariance yields the generator Lz=-i(∂/∂φ) and separate azimuthal ODE LzΨ=mΨ as before.Invariance under translations along the z-axis with the generator -i(∂/∂z) gives the separate ODE in the z-variable provided the boundary conditions obey the same symmetry. The potential V=V(ρ) or V=V(z) depends on one variable,as a rule. ◎In general,there are n mutually commuting generators H with eigenvalues m i i of the (classical) Lie group G of rank n and the corresponding Casimir invariants C with eigenvalues c ,which yield the separate ODEs i i H Ψ=m Ψ C Ψ=c Ψ i i i i in addition to the radial ODE HΨ=EΨ. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.173.167.219 ※ 編輯: kuromu 來自: 218.173.167.219 (07/17 14:04)

07/18 01:13, , 1F
這只是在說SO(3)會有這些結果.
07/18 01:13, 1F

07/18 01:14, , 2F
我覺得不知道這些, 對於學習並沒有影響.
07/18 01:14, 2F
文章代碼(AID): #1CGKVHVy (Physics)
文章代碼(AID): #1CGKVHVy (Physics)