Re: [問題] jackson中的電容C

看板Physics作者 (朱子)時間16年前 (2009/11/18 22:09), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串4/4 (看更多)
Q_1 = C_11 V_1 + C_21 V_2 Q_2 = C_12 V_1 + C_22 V_2 Now consider the usual case in which Q_1 = -Q_2 = Q , => C_11 V_1 + C_21 V_2 = Q C_12 V_1 + C_22 V_2 = -Q then by Cramer's rule, V_1 = Q(C_21+C_22)/det(C_ij) V_2 = -Q(C_11+C_12)/det(C_ij) => V = V_1-V_2 = Q Σ_ij C_ij / det(C_ij) = Q/C thus the capacitance we have learned before is given by C = det(C_ij)/Σ_ij C_ij 我猜chungweitw大的意思應該是這樣 ※ 引述《mouwat (QQ)》之銘言: : : 我有再看了課本 但不是很懂= = : : 老師上課有講一個簡單例題 : : 半徑a跟b的同心圓殼 算出來的C11=-C12=-C21=/=C22 : : 最後就取C=C11 這怎麼去決定? : : C11=ab/(b-a) C12=C21=-ab/(b-a) C22=b^2/(b-a) : the coefficients Cij are capacities : or capacitances while Cij,i=/=j,are called coefficients of induction. : thecapacitance of a conductor is therefore the total charge on the conductor : when it is maintained at unit potential, : all other of conductors beingheld at zero potential. : sometimes the capacitance of a system of conductors is also defined. : for example, : the capacitance of two conductors carrying equal and opposite charges : in the presence of other grounded conductors is defined as the ratio : of the charge on one conductor to the potential difference between them. : the equations Qi=summation CijVi can be used to express this capacitance : in terms of the coefficients Cij : 如果沒錯你應該是說這段吧 : 可是除了提到V=V1-V2 : 我不太了解哪裡敘述可以導出你提到的C=det(Cij)/sum(Cij) : 是我英文不好嗎~"~ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.213.158 ※ 編輯: mantour 來自: 140.112.213.158 (11/18 22:11)

11/18 23:08, , 1F
大感謝 我想以後還需要你多加指導
11/18 23:08, 1F
文章代碼(AID): #1B100cqJ (Physics)
文章代碼(AID): #1B100cqJ (Physics)