看板
[ Math ]
討論串[中學] 資優班幾何試題
共 4 篇文章
首頁
上一頁
1
下一頁
尾頁
內容預覽:
最近有點閒加上看到這題蠻有趣的就稍為想一下=3=. http://ppt.cc/PPfM. 幫原po把圖轉正,參考附圖右邊的圖。. 在滑動過程的任一瞬間,. 由 角POQ = 角PAQ = 90度 可知 O、P、Q、A 四點共圓,. 故 角POA = 角PQA = 60度,. 也就是說整個過程 A
(還有515個字)
內容預覽:
設點P(x,0). L = 2R. Q(0,√(L^2 - x^2)). S(x/2, (1/2)√(L^2 - x^2)). A(x/4 + (1/4)√(3(L^2 - x^2)), √3[x/4 + (1/4)√(3(L^2 - x^2))]). 所以A的軌跡在y = √3 x上. A的x座標
(還有13個字)
內容預覽:
以下是我個人直觀的作法 正確與否不知. 首先你不用知道A的軌跡是啥...但你可以把鐵片當成是同時有. 1.Q點為轉軸的轉動 2.直線下落的運動. 再來你可以假設成 1.沒有角加素肚. 2.的話可以利用P點是水平運動得知下落素肚就是P點的Y軸方向素肚的反向. 時間隨便設個T吧. 可以分別算出A點的 1
(還有4個字)
首頁
上一頁
1
下一頁
尾頁