看板
[ Math ]
討論串[分析] 兩題高微
共 9 篇文章
內容預覽:
1. {x_n} be a sequence of non-negative real number. 1. satisfying x_(n+1) =< x_n + -----. n^2. 則x_n是否一定會收斂?. 我猜是沒有 因為Cauchy sequence的條件只有一邊. 但是畫圖想找反例又
(還有119個字)
內容預覽:
我想題目應該是there exists x and y in (a,b) such that..... If not, then there exists c such that |f'(x)| < c for all x in (a,b). By mean value theorem, |(f(x
(還有17個字)
內容預覽:
1.. let f:[a,b] -> R be a differentialble function. f'(a) = +infinity. f'(b) = -infinity. For c in R, there exists x and y in [a,b]. such that f'(x) >
(還有443個字)