Re: [分析] 兩題高微

看板Math作者 (Insomniac)時間15年前 (2011/02/19 23:45), 編輯推噓2(201)
留言3則, 2人參與, 最新討論串2/9 (看更多)
※ 引述《Jer1983 (stanley)》之銘言: : 1. : let f:[a,b] -> R be a differentialble function. f'(a) = +infinity : f'(b) = -infinity. For c in R, there exists x and y in [a,b] : such that f'(x) > c and f'(y) < c. 請問這件事是怎麼做到的? 我想題目應該是there exists x and y in (a,b) such that.... If not, then there exists c such that |f'(x)| < c for all x in (a,b) By mean value theorem, |(f(x)-f(a))/(x-a)|=|f'(d)|< c for some d in (a,b) Let x goes to a, then f'(a) is bounded. : 2. : let f:(a,b) -> R be a differentiable function, then |f(x)| <= K for : x in (a,b). 請問這邊是怎麼來的? (我只知道連續函數在閉區間是有界) 這是錯的, f(x)=1/x in (0,1) 就是反例 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 69.223.185.63

02/20 00:08, , 1F
請問第二題 |f'(x)| 會是有界嗎?
02/20 00:08, 1F

02/20 00:08, , 2F
其實這是李杰高微裡面的一個題目 我懷疑打錯了
02/20 00:08, 2F

02/20 01:55, , 3F
f(x)=log(x)
02/20 01:55, 3F
文章代碼(AID): #1DN-MP0x (Math)
討論串 (同標題文章)
文章代碼(AID): #1DN-MP0x (Math)