Re: [中學] 三邊長與面積 證明

看板Math作者 (大通張韶涵我愛妳)時間6年前 (2019/12/16 11:39), 6年前編輯推噓0(000)
留言0則, 0人參與, 最新討論串5/5 (看更多)
※ 引述《superlori (天才有限,努力無限)》之銘言: : ※ 引述《icu (這是可以說的秘密)》之銘言: : : △ABC三邊長為a,b,c , 試証 a^2 +b^2 +c^2 ≧4√3▲ (▲為三角形面積) : 考慮 a^2 +b^2 +c^2-4√3▲ : ▲=(1/2)absinC : 又由餘弦定理c^2=a^2+b^2-2abcosC,代入 : a^2 +b^2 +c^2-4√3▲ : = a^2 +b^2+(a^2+b^2-2abcosC)-2√3absinC : = 2a^2+2b^2-2abcosC-2√3absinC : = 2a^2+2b^2-2ab(cosC+√3sinC) : = 2a^2+2b^2-4absin(C+theta) : ≧ 2a^2+2b^2-4ab = 2(a-b)^2 ≧ 0 : 故 a^2 +b^2 +c^2 ≧4√3▲ 參考 陳一理 所編著的"三角" 可知 (cotA+cotB+cotC)=(1/4*delta)(a^2+b^2+c^2) >= sqrt3 ... 即證 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 49.158.153.195 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1576467596.A.035.html ※ 編輯: wayne2011 (49.158.153.195 臺灣), 12/17/2019 11:34:50 ※ 編輯: wayne2011 (49.158.153.195 臺灣), 12/17/2019 11:36:13
文章代碼(AID): #1TzloC0r (Math)
討論串 (同標題文章)
文章代碼(AID): #1TzloC0r (Math)