Re: [證明] Paul Erdos
※ 引述《triumphant10 (yu12510 )》之銘言:
: Let r1,r2,......be real numbers. For any indices i and j with 1 <= i < j
: def
: ,let r(i,j) = ri + ri+1 + ... +rj-1.
: if there is a positive integer m with r(1,j) <= m
: for any interger j >= 2 , then there is a positive integer k with
: r(k,j) < 1/2
: for any integer j > k
: How to prove it ?
設不存在 正整數k 使得所有>k的j 都滿足r(k, j) < 1/2
對於任意正整數k_0
存在某個>k的j_0
滿足r(k_0, j_0) >= 1/2
將這個j_0 = f(k_0)
k_(i+1)定義為f(k_i)+1
r(1,k_1) + r(k_2,f(k_2)) + ... + r(k_(2m+1),f(k_(2m+1))) >= m + 1/2
但是r(1,f(k_(2m+1))) <= m
所以矛盾
原命題正確
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.243.62.153
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1538928309.A.35C.html
→
10/08 00:05,
7年前
, 1F
10/08 00:05, 1F
討論串 (同標題文章)