Re: [代數] 求f(2017)

看板Math作者 (亞澤蛙 妮可)時間7年前 (2018/09/01 17:00), 7年前編輯推噓0(005)
留言5則, 1人參與, 7年前最新討論串3/3 (看更多)
※ 引述《gdchess (飄弈)》之銘言: : f(x+1)= [1+f(x)]/[1-f(x)] f(2)=2017 : 如標題... : 卡關了QQ 原則:分子分母都有變數->看了很煩->就把分子的變數移除變成帶分數 step1:f(x+1)+1=2/[1-f(x)] -> [f(x+1)+1][1-f(x)]=2............................R1 step2:為了少打一點字 簡寫g(x)=1/f(x) g(x+1)=[1-f(x)]/[1+f(x)]=[g(x)-1]/[g(x)+1] -> [g(x+1)-1][g(x)+1]=-2 -> [1-f(x+1)][1+f(x)]=-2f(x)f(x+1).................R2 step3:相乘R1和R2兩個式子 [1-f(x+1)f(x+1)][1-f(x)f(x)] =-4f(x)f(x+1) [1-f(x+1)f(x+1)][1-f(x+2)f(x+2)]=-4f(x+2)f(x+1) 所以[1-f(x)f(x)]/f(x)=[1-f(x+2)f(x+2)]/f(x+2) step4:假設(1-aa)/a=(1-bb)/b下去計算 可得ab=-1或a-b=0 我也懶得去討論是哪一個對 如果是前者則f(x)f(x+2)=-1 -> f(x)=f(x+4) 如果是後者則f(x)=f(x+2) (如果依照Honor1984大大的說法 應該是前者正確 但總之驗證的方法就是直接看f(1)和f(3)的關係) step5:f(1)=f(2017)=1-(2/2018)... Ans -- http://imgur.com/QTIXoZQ
取自萌娘百科-Niconiconi*20.gif( zh.moegirl.org/zh-tw/File:Niconiconi*20.gif ) http://imgur.com/WiJ9BQl
取自萌娘百科-妮可顏藝.jpg( zh.moegirl.org/zh-tw/File:妮可顏藝.jpg ) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.217.172 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1535792454.A.4B7.html ※ 編輯: thr3ee (140.112.217.172), 09/01/2018 17:04:12 ※ 編輯: thr3ee (140.112.217.172), 09/01/2018 17:07:52

09/01 17:09, 7年前 , 1F
謝謝thr3ee大大的解釋,瞭了
09/01 17:09, 1F

09/01 17:10, 7年前 , 2F
突然想到代數有沒有一種學問可以整理出這類函數週期
09/01 17:10, 2F

09/01 17:11, 7年前 , 3F
系統化的處理之類的
09/01 17:11, 3F
函數方程有很多類似的問題 可以參考wiki解釋: https://zh.wikipedia.org/wiki/函數方程 然後複分析裡面有很多gamma/zeta/...之類的函數 都是要用這種週期性和一些複雜的恆等式來延拓和分析 甚至於更多的情況還需要搭配積分(如積分一圈=0的性質)來推論 ※ 編輯: thr3ee (140.112.217.172), 09/01/2018 17:18:29

09/01 17:28, 7年前 , 4F
謝謝t大的介紹,最近剛好對特殊函數有點興趣,像羅組
09/01 17:28, 4F

09/01 17:28, 7年前 , 5F
格公式聽說是用複變導出來的,感到非常奇妙
09/01 17:28, 5F
文章代碼(AID): #1RYbL6It (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
代數
1
20
完整討論串 (本文為第 3 之 3 篇):
代數
1
20
文章代碼(AID): #1RYbL6It (Math)