Re: [其他] 零為甚麼在空集合裡面

看板Math作者 (2025全面小康)時間8年前 (2018/01/21 19:00), 編輯推噓1(1022)
留言23則, 5人參與, 8年前最新討論串2/2 (看更多)
※ 引述《china2025 (2025全面小康)》之銘言: : 我是自修學哲學 分析哲學 : 裡面提到用邏輯概念去區分自然數 : 一個東西和自己一樣 : 一個東西和自己不一樣 : 用以上兩個東西去分類自然數 : 空集合就是一個東西和自己不一樣的集合 : 那請問 : 零不是和自己一樣嗎 : 零為甚麼會在空集合中 : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : 我是完全外行 寫錯請見諒 : 該數學作者是Frege The obvious suggestion is then to identify the first of the natural numbers, namely, the number 0, with the null class. This is what is done in modern set theory and is the simplest definition. Frege, in fact, offers a more complicated definition, identifying the number 0 not directly with the null class but with the class of classes that have the same number of members as the null class; but we can ignore this complication here. For present purposes, let us accept that this gives us our first natural number, the number 0, defined as the null class. We can then form the concept “is identical with 0” (i.e., the concept “is identical with the null class”). Here the corresponding class has just one member, namely, 0 (the null class itself), since only this object (i.e., 0) is identical with 0. This class (the class of things that are identical with 0) is distinct from its sole member (0, i.e., the null class), since the former has one member and the latter has no members, so we can identify the number 1 with this class (the class of things that are identical with 0). We now have two objects, and can then form the concept “is identical with 0 or 1” (using, in this case, the additional logical concept of disjunction). This gives us a corresponding class which we can identify with the number 2, and so on. Starting with the null class, then, and using only logical concepts, we can define all the natural numbers. Beaney, Michael. Analytic Philosophy: A Very Short Introduction (Very Short Introductions) (pp. 13-14). OUP Oxford. Kindle Edition. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.160.90.111 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1516532424.A.10A.html

01/21 19:01, 8年前 , 1F
我把讀不懂的原文po上來了
01/21 19:01, 1F

01/21 19:11, 8年前 , 2F
他定義 0={ }
01/21 19:11, 2F

01/21 19:12, 8年前 , 3F
只有 0 自己和它自己一樣 所以所有和 0 一樣的元素
01/21 19:12, 3F

01/21 19:12, 8年前 , 4F
所形成的集合為 {0}
01/21 19:12, 4F

01/21 19:13, 8年前 , 5F
顯然這個集合本身和 0 不一樣 所以叫它是 1
01/21 19:13, 5F

01/21 19:14, 8年前 , 6F
現在蒐集所有和 0 或 1 一樣的元素 形成 {0, 1}
01/21 19:14, 6F

01/21 19:14, 8年前 , 7F
這個集合和 0 或 1 都不一樣 叫它是 2
01/21 19:14, 7F

01/21 19:15, 8年前 , 8F
可以搜尋math板第一篇爆文 雖然那邊幾乎沒解釋什麼
01/21 19:15, 8F

01/21 19:19, 8年前 , 9F
謝謝
01/21 19:19, 9F

01/21 19:58, 8年前 , 10F
等等,他講的是class不是set
01/21 19:58, 10F

01/21 20:03, 8年前 , 11F
尤其是中間一段說的都是equivalent relation,明擺
01/21 20:03, 11F

01/21 20:03, 8年前 , 12F
著不是講set啊。
01/21 20:03, 12F

01/21 23:11, 8年前 , 13F
在set theory中 set是一種特別的class
01/21 23:11, 13F

01/21 23:11, 8年前 , 14F
剩下也都是語言上的不同而已
01/21 23:11, 14F

01/22 00:57, 8年前 , 15F
這裡講Frege的定義的意思是 定義0為"所有沒有元素的
01/22 00:57, 15F

01/22 00:59, 8年前 , 16F
class形成的class" (類似地 1就定義成"所有單一原素
01/22 00:59, 16F

01/22 00:59, 8年前 , 17F
的class形成的class") Frege基本上是不知道class和
01/22 00:59, 17F

01/22 01:00, 8年前 , 18F
set的差異啦 不過Frege的系統是矛盾的被羅素發現
01/22 01:00, 18F

01/22 01:01, 8年前 , 19F
羅素沿用Frege的自然數定義但加了更多條件以致他整
01/22 01:01, 19F

01/22 01:02, 8年前 , 20F
個系統非常醜陋(其實也就是為什麼他要用一整頁證1+1
01/22 01:02, 20F

01/22 01:03, 8年前 , 21F
總之現代數學採用的是von Neumann的定義 較簡單
01/22 01:03, 21F

01/23 02:03, 8年前 , 22F
上面兩人的討論讓我想到親愛的Factor group~~
01/23 02:03, 22F

01/23 02:04, 8年前 , 23F
有點像是一個是coset代表元,一個是coset本身
01/23 02:04, 23F
文章代碼(AID): #1QP7B84A (Math)
文章代碼(AID): #1QP7B84A (Math)