Re: [微積] power series ODE問題

看板Math作者 (奈何上天造化弄人?)時間8年前 (2017/10/30 09:40), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《jolin19 (alex)》之銘言: : find a power series (centered at the origin) satisfying the following ODE : zf''(z)+f'(z)+zf(z)=0 : assueme f(0) =1 and simplify the result, using sigma notation : hint: f(z)=sigma(n=0->∞)a(n)*z^n=a(0)+a(1)z+a(2)z^2+a(3)z^3+... : 求解此題? 下標和函數是不一樣的 f(z)的級數表達式代入zf''(z)+f'(z)+zf(z)=0 => Sigma k(k-1)a_k z^(k-1) + Sigma ka_k z^(k-1) + Sigma a_k z^(k+1) = 0 k=2 k=1 k=0 => a_1 + Sigma {[k^2 a_k + a_(k-2)]z^(k-1)} = 0 k=2 因為f(0) = 1 => a_0 = 1 由a_k = a_(k-2) / (k^2) => a_(2k) = [1 / (2k)!!]^2 k = 0, 1, 2, ... a_(2k+1) = a_1 * [1 / (2k+1)!!]^2 k = 0, 1, 2, ... 就把係數通通代進去即可 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.10.112 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1509327653.A.04B.html
文章代碼(AID): #1PzeCb1B (Math)
文章代碼(AID): #1PzeCb1B (Math)