
Re: 高中函數

因為通過原點 設f(x)=ax^2+bx
f(4+t)=f(2-t) 各自代入 化簡後得到 (6a+b)(t+1)=0
t為任意實數 故6a+b=0 =>b=-6a
代入原式 f(x)=ax^2-6ax
f(x-106)最大值為1 代入
f(x-106)
=a(x-106)^2-6a(x-106)
=a((x-106)-3)^2-9a
=>-9a=1 a=-1/9 b=2/3
f(x)=-1/9x^2+2/3x...#
: 2.
: https://i.imgur.com/Wr7MYOV.jpg

y=x^2+kx+a 為向上拋物線 恆在直線y=2x+1上方
表示兩者無交點
那麼x^2+kx+a=2x+1無實數解 (判別式<0)
其判別式為 (k-2)^2-4(a-1)<0
a>((k-2)^2+4)/4...#
: 3.
: https://i.imgur.com/sAD6Vic.jpg

在x>2時 y=-(x-3)^2+9 k恆小於9
在x=2時 y=8 k=8
在x<2時 y=(x+1)^2-1 k恆大於-1
-1<k<9...#
(這題畫圖會更容易明白)
: 有請神人求解謝謝你們:)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 175.181.145.225
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1507307768.A.7D9.html
※ 編輯: tyz (175.181.145.225), 10/07/2017 00:37:50
→
10/07 01:33,
8年前
, 1F
10/07 01:33, 1F
討論串 (同標題文章)