Re: [微積] 數列要如何證明收斂?
※ 引述《shaqgod (ddinin)》之銘言:
: 請問各位大大3.4題要如何證明收斂
: http://m.imgur.com/gallery/RmLoD0X
: -----
: Sent from JPTT on my Asus ASUS_T00N.
3.
Let z_0 = y_0 = a
z_1 = y_1 - y_0 = b-a
z_n = y_n - y_(n-1), n positive integer
-1
Then z_n = --- z_(n-1)
3
-1
= (---)^(n-1) z_1 (z_0 is not in recursive formula)
3
n n -1
y_n = sum z_k = z_0 + z_1 sum (---)^(k-1)
k=0 k=1 3
-1 1 3
Since the series {(---)^(n-1)} converges to -------- = ---
3 1-(-1/3) 4
the sequence {y_n} converges to a + (3/4)(b-a) = (a+3b)/4
4.
Clearly x_n <= x_(n-1) for n >= 2
and x_n all positive thus x_n >= 0 for all n
By Monotone sequence theorem {x_n} converges to some real number
y_n >= y_(n-1) for n >= 2
We now try to find an upper bound M such that y_n <= M for all n
Let 1 >= k > 0
M
If there is an M such that ------- > 1 + k
y_(n-1)
M 1 + k 2^n 2^n - 1
Then --- = --------- = (1+k)------- > (1+k)-------
y_n 1 + 1/2^n 2^n + 1 2^n
1 1+k 2
= (1+k)(1 - ---) = 1 + k - ----- >= 1 + k - ---
2^n 2^n 2^n
2 k 1
Now we want k - --- = ---, k = -------
2^n 2 2^(n-2)
M 1
Also ----- > 1 + --- = 2, take M = 4
y_1 2^0
Then above is exactly the induction proof
M 1
for ----- > 1 + ------- for all n
y_n 2^(n-1)
Thus M > y_n for all n, M is an upper bound for {y_n}
By Monotone sequence theorem {y_n} converges to some real number
--
嗯嗯ow o
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.25.105
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1492586764.A.E2F.html
推
04/19 15:37, , 1F
04/19 15:37, 1F
→
04/19 15:40, , 2F
04/19 15:40, 2F
→
04/19 15:40, , 3F
04/19 15:40, 3F
推
04/19 15:43, , 4F
04/19 15:43, 4F
→
04/19 15:49, , 5F
04/19 15:49, 5F
推
04/19 15:51, , 6F
04/19 15:51, 6F
→
04/19 15:52, , 7F
04/19 15:52, 7F
推
04/19 16:18, , 8F
04/19 16:18, 8F
→
04/19 16:19, , 9F
04/19 16:19, 9F
→
04/19 16:19, , 10F
04/19 16:19, 10F
→
04/19 16:24, , 11F
04/19 16:24, 11F
→
04/19 16:25, , 12F
04/19 16:25, 12F
推
04/19 16:30, , 13F
04/19 16:30, 13F
→
04/19 16:30, , 14F
04/19 16:30, 14F
→
04/19 16:31, , 15F
04/19 16:31, 15F
→
04/19 16:36, , 16F
04/19 16:36, 16F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):