[機統] 基本機率事件 - 交大電子所乙組消失

看板Math作者時間9年前 (2016/12/27 11:53), 編輯推噓2(206)
留言8則, 4人參與, 最新討論串1/2 (看更多)
Two gamblers play the game of "head or tails" . Each time a coin lands heads up , then player A wins $1 from B ; otherwise (i.e. a coin lands tails up) , player B wins $1 from A . Suppose that player A initially has a dollars and player B has b dollars. (b)If the game is not fair and on each play , player A wins $1 from B with probability p , p is not 1/2 , 0 < p < 1 . What is the probability that player A will be ruined? 解答 : A贏1$的機率為p,B贏1$的機率為q = 1-p,則 A輸光的機率 = Pa = [1 - (q/p)^a] / [1 - (q/p)^a+b)] -------------------------------------------------------------- (a)小題問A輸光的機率,答案是b/a+b,因為可以理解所以沒問這題 (b)小題中 想知道為何有(q/p)^a 以及(q/p)^a+b 道底是套甚麼式子?? 謝謝!! -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 163.20.243.69 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1482810781.A.54B.html

12/27 12:29, , 1F
google: Gambler's Ruin Problem
12/27 12:29, 1F

12/27 12:41, , 2F
我一個小問題,a/(a+b)這答案有排除掉a光還繼續玩的
12/27 12:41, 2F

12/27 12:41, , 3F
可能嗎?
12/27 12:41, 3F

12/27 12:41, , 4F
A輸光
12/27 12:41, 4F

12/27 13:06, , 5F
ruin的問題應該是一方輸光就結束了 stopping time
12/27 13:06, 5F

12/27 13:19, , 6F
嗯嗯,了解
12/27 13:19, 6F

12/27 19:15, , 7F
還是有點看不懂@@
12/27 19:15, 7F

12/27 21:52, , 8F
可搜尋醉漢走路 跟一樓差不多 但是是中文的
12/27 21:52, 8F
文章代碼(AID): #1OOUMTLB (Math)
文章代碼(AID): #1OOUMTLB (Math)