Re: [機統] 基本機率事件-台大電子所

看板Math作者 (希望願望成真)時間9年前 (2016/12/27 11:04), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《martine318 ()》之銘言: : In a contest , contestants A , B and C are asked , in turn , a question. : If a contestant gives a wrong answer to the question , he or she will be : dropped out of the game. the remaining two will continue to compete : until one of them drops out. The last person remaining is the winner. : Suppose that a contestant knows the answer to a question independently : of the other contestants , with probability P. Let ABC represent the : event that A drops first , B next , and C wins . Calculate the probability : of P{ABC) : 解答 : (1-P)^2 + P^3(1-P)^2+P^6(1-P)^2+...... : +(1-P)^2*P^2+P^3(1-P)^2*P^2+P^6(1-P)^2*P^2+..... : +(1-P)^2*P^4+P^3(1-P^2)*P^4+P^6(1-P^2)*P^4+..... 應該還要再繼續寫...... : ~ : = (1-P)^2/(1-P^2)*(1/1-P^3) : 想請問一下列式成上面是如何列的,謝謝!! 如cuttlefish表達的 當A在第k輪答錯 B也同一輪接著答錯的機率 = (P^3)^(k-1) (1 - P)^2 ∞ 所以AB在同一輪答錯的總機率 = Σ P^(3(k-1)) (1 - P))^2 k=1 當A在第k輪答錯 B也第k+1輪接著答錯的機率 = (P^3)^(k-1) (1 - P) P^2 (1 - P) ∞ 所以A比B早一輪答錯的總機率 = Σ P^(3(k-1)) (1 - P))^2 P^2 k=1 當A在第k輪答錯 B也第k+m輪接著答錯的機率 = (P^3)^(k-1) (1 - P) (P^2)^(m) (1 - P) ∞ 所以A比B早m輪答錯的總機率 = Σ P^(3(k-1)) (1 - P))^2 P^(2m) k=1 ∞ ∞ 最後就是取和 = Σ Σ P^(3(k-1)) (1 - P))^2 P^(2m) m=0 k=1 = (1 - P)^2 * [1 / (1 - P^2)] * [1 / (1 - P)^3] 而你只寫到m = 3,所以我才說你應該要繼續寫, 至少表達還有類似的列。 解答的做法我覺得不好, 明明可以用很單純的方式解決 當A在第k輪答錯,則B在A之後答錯的機率 = (P^3)^(k - 1) (1 - P)[1 + P^2 + P^4 + ...](1 - P) = P^(3(k - 1))[1 / (1 - P^2)](1 - P)^2 所以總共的機率 ∞ = Σ P^(3(k - 1))[1 / (1 - P^2)](1 - P)^2 k=1 = [1 / (1 - P^3)] * [1 / (1 - P^2)] * (1 - P)^2 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.56.10.112 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1482807863.A.E12.html

12/27 11:24, , 1F
感謝 高手!!
12/27 11:24, 1F
文章代碼(AID): #1OOTetuI (Math)
文章代碼(AID): #1OOTetuI (Math)