Re: [其他] onto 與合成函數

看板Math作者 (Oops)時間9年前 (2016/11/14 21:13), 編輯推噓2(205)
留言7則, 2人參與, 最新討論串2/3 (看更多)
※ 引述《dog2005xx (pp)》之銘言: : *(表示合成函數) : 題目: : f:A->B. : 假如f是onto if and only if : wherever C is a set and g:B->C and : h:B->C 是函數 such that g*f=h*f : it follow that g=h => f is onto function Let h,g be distinct functions, where h:B->C, g:B->C, and g。f = h。f since h,g are distinct, there exists α∈B such that g(α) ≠ h(α). Since f is onto, then ∃x∈A, such that f(x) = α. which implies (g。f)(x) ≠ (h。f)(x) <= For arbitrary h,g, g。f = h。f, implies g=h If f is not onto, then ∃y∈B such that ∀x∈A, f(x)≠y Let g(y) = k1 ≠ h(y) = k2, where k1,k2∈C (which g。f = h。f is still hold.) But g≠h. -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 180.177.35.29 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1479129237.A.004.html

11/14 21:14, , 1F
都用反證法..
11/14 21:14, 1F

11/14 22:04, , 2F
為何存在y s.t. g(y)不等於h(y)
11/14 22:04, 2F

11/14 22:11, , 3F
y是用第一行敘述的, 所有f(x)都沒辦法map到的y
11/14 22:11, 3F

11/14 22:12, , 4F
至於g(y), h(y)是隨便取的, 條件有說是任意h,g
11/14 22:12, 4F

11/14 22:13, , 5F
所以我可造出滿足g。f = h。f的敘述後, 其他部份我
11/14 22:13, 5F

11/14 22:13, , 6F
可以任意調整
11/14 22:13, 6F

11/14 22:18, , 7F
謝謝
11/14 22:18, 7F
文章代碼(AID): #1OARYL04 (Math)
文章代碼(AID): #1OARYL04 (Math)