[分析] Lebesgue R->R+可積的一個性質
數學板安安
如題,有個練習題想問一下
Let f:R->R+ be a Lebesgue integrable function.
Prove that for almost every real number x, we
have f(n+x)->0 when |n|->infty (n integer).
後面附了一個簡單的問題(這個我會)
Do we have f(t)->0 when |t|->infty?
回到原題,我先說明
A={x in R, f(n+x)->0 |n|->infty} is measurable.
Because A= int uni int {x, 0<=f(n+x)<=1/k}
第一個int k=1 to infty
第二個uni N=1 to infty
第三個int |n|>=N
And {x, 0<=f(n+x}<=1/k} is measurable.
然後就做不出來了QQ
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 86.247.217.159
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1478131234.A.52A.html
→
11/03 09:09, , 1F
11/03 09:09, 1F
→
11/03 09:16, , 2F
11/03 09:16, 2F
→
11/03 09:25, , 3F
11/03 09:25, 3F
→
11/03 09:35, , 4F
11/03 09:35, 4F
→
11/03 09:38, , 5F
11/03 09:38, 5F
→
11/03 10:16, , 6F
11/03 10:16, 6F
討論串 (同標題文章)
完整討論串 (本文為第 1 之 2 篇):