Re: [線代] 兩題證明
※ 引述《tim8238818 (AAAAAAAAAAAAAAAAAAAAAAA)》之銘言:
: Prove that if A is an n x n skew symmetric matrix where n is odd,
: then det(A) = 0.
: Let A be an n x n invertible matrix. Prove that at least one of the matrices
: associated with the minors, Mij, must be invertible
: 第一題我應該會用數學歸納法做
: 但是det(A)=0我一直想不到怎麼寫
: 第二題就沒什麼頭緒
: 有點想用反證法,但是不知道怎麼開頭
: 先謝謝板上神人的不吝指教
1.A^T=-A
detA
=det(A^T)
=det(-A)
=(-1)^n*(detA)...det(kA)=(k^n)(detA),出現在Steven J.Leon的線代習題.
=-detA
如此一來,2detA=0,detA=0.
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.58.103.35
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1459131017.A.B61.html
※ 編輯: wayne2011 (61.58.103.35), 03/28/2016 10:14:23
→
03/28 10:29, , 1F
03/28 10:29, 1F
→
03/28 10:33, , 2F
03/28 10:33, 2F
→
03/28 10:38, , 3F
03/28 10:38, 3F
→
03/28 10:42, , 4F
03/28 10:42, 4F
→
03/28 10:56, , 5F
03/28 10:56, 5F
→
03/28 10:56, , 6F
03/28 10:56, 6F
→
03/28 10:57, , 7F
03/28 10:57, 7F
→
03/28 11:03, , 8F
03/28 11:03, 8F
→
03/28 11:04, , 9F
03/28 11:04, 9F
討論串 (同標題文章)