Re: [中學] 三角函數 判定形狀
※ 引述《wayne2011 (吳怡萱情人節快樂)》之銘言:
: ※ 引述《ding94xu04 (錯誤示範)》之銘言:
: : 數學版上的大家好
: : 最近解到一個題目
: : 三角形ABC滿足下列條件,試判定其形狀
: : a=(b+c)sin(A/2)
: : 答案為等腰三角形
: : 我列了一大串算是變成a=b+c
: : 小學教過三角形三邊長這樣是不合理的
: : 不知道哪邊有算錯
: : 上來請教各位~~
: : 謝謝大家
: : http://i.imgur.com/NzIt7f9.jpg

: 出現在陳一理所編著的"三角函數"
: 當中的公式"(b+c)/a=(cosB+cosC)/(1-cosA)"
: ...張景中"平幾新路"一書當中,內心比"AI/ID=(b+c)/a"
: 將此公式拿來運用
: 可得(cosB+cosC)/(1-cosA)=1/[sin(A/2)]
: cosB+cosC=2sin(A/2)
: 再將左式"和差化積"寫出
: 2cos[(B+C)/2]cos[(B-C)/2]=2sin(A/2)
: 2cos[(pi-A)/2]cos[(B-C)/2]=2sin(A/2)
: cos[(B-C)/2]=1...正餘弦"互餘"可化約
: (B-C)/2 = 0 , B=C
: 亦即為"等腰三角形"
設 B,C 對角 A 內角平分線投影點分別為 B',C'
a^2=BC^2=(BB'+CC')^2+B'C'^2≧(BB'+CC')^2=((b+c)sin(A/2))^2
故等號成立 => B'C'=0 => BC⊥角 A 內角平分線 => B = C
--------------------------------------------------------------
這樣做連三角的公式都不用, 頂多用到定義(也許是題目設計的關係)
盡信書不如無書?
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 101.139.156.95
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1458365820.A.18E.html
推
03/19 16:21, , 1F
03/19 16:21, 1F
→
03/19 18:57, , 2F
03/19 18:57, 2F
推
03/19 19:40, , 3F
03/19 19:40, 3F
→
03/19 19:41, , 4F
03/19 19:41, 4F
→
03/19 20:29, , 5F
03/19 20:29, 5F
推
03/19 20:30, , 6F
03/19 20:30, 6F
→
03/19 20:31, , 7F
03/19 20:31, 7F
→
03/19 20:33, , 8F
03/19 20:33, 8F
→
03/19 20:50, , 9F
03/19 20:50, 9F
推
03/19 20:55, , 10F
03/19 20:55, 10F
推
03/19 21:01, , 11F
03/19 21:01, 11F
→
03/19 21:04, , 12F
03/19 21:04, 12F
討論串 (同標題文章)