Re: [中學] 三角函數求解
Of course you should let A=r*sin(t), B=r*cos(t)
for some r and t (it is easy to find such r and t),
then
C = A*sin(d) + B*cos(d)
= r*(sin(t)*sin(d) + cos(t)*cos(d))
= r*cos(d-t)
Hence, d-t = arccos(C/r),
d = t + arccos(C/r).
We obtain the result.
※ 引述《wayne2011 (選戰過後的台灣人)》之銘言:
: ※ 引述《unsh ()》之銘言:
: : A, B, C 為已知量
: : A*sin(d) + B*cos(d) = C
: : 請問有辦法把角度d的可能解求出來嗎?
: : 謝謝解答
: B^2cos^2(d)=A^2sin^2(d)-2CAsin(d)+C^2
: (A^2+B^2)sin^2(d)-2CAsin(d)-(B^2-C^2)=0
: sin^2(d)-[2CA/(A^2+B^2)]sin(d)-[(B^2-C^2)/(A^2+B^2)]=0
: {sin(d)-[CA/(A^2+B^2)]}^2=[(B^2-C^2)/(A^2+B^2)]+[CA/(A^2+B^2)]^2
: sin(d)=[CA/(A^2+B^2)]+[B/(A^2+B^2)]sqrt(A^2+B^2-C^2) or
: [CA/(A^2+B^2)]-[B/(A^2+B^2)]sqrt(A^2+B^2-C^2)
: 最後
: d=arcsin{[CA+Bsqrt(A^2+B^2-C^2)]/(A^2+B^2)]} or
: arcsin{[CA-Bsqrt(A^2+B^2-C^2)]/(A^2+B^2)]}
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 122.225.36.176
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1453378943.A.E7F.html
推
01/21 21:22, , 1F
01/21 21:22, 1F
推
01/22 09:53, , 2F
01/22 09:53, 2F
討論串 (同標題文章)