Re: [中學] 對數的問題
※ 引述《jenshi (小旭)》之銘言:
: log4為底x為真數=log9為底y為真數=log6為底(x-y)為真數
: 求√y/x
logx/2log2 = logy/2log3 = log(x-y)/(log2+log3)
=(logx + logy)/2(log2+log3)
(加比定律)
→(logx + logy) /2 = log(x-y)
→xy = (x-y)^2
→x^2 -3xy + y^2 =0
設y/x = t
x-y>0→t<1 → t^2 - 3t +1 =0
t = (1/2)*(3-√5) =[(√5 - 1)/2]^2
√(y/x) = (√5-1)/2
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.240.174.33
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1442072678.A.A2A.html
※ 編輯: Tiderus (123.240.174.33), 09/12/2015 23:48:55
推
09/13 15:05, , 1F
09/13 15:05, 1F

→
09/13 17:42, , 2F
09/13 17:42, 2F
推
09/13 17:48, , 3F
09/13 17:48, 3F
→
09/13 17:50, , 4F
09/13 17:50, 4F
推
09/13 17:54, , 5F
09/13 17:54, 5F
→
09/13 17:55, , 6F
09/13 17:55, 6F
討論串 (同標題文章)