Re: [中學] 克拉瑪
a_1 b_1 c_1 1 0 0 d_1
令 A = [ a_2 b_2 c_2] B = [3 1 0] d = [d_2]
a_3 b_3 c_3 0 -2 1 d_3
1 -1 1
原方程式: A [2] = d => A d = [2]
3 3
x
新方程式: AB [y] = 5d
z
x 1
故 B [y] = 5[2]
z 3
x -1 1 5
[y] = 5 B [2] = [-5].
z 3 5
要記得提醒學生,解一般聯立方程組時,
矩陣列運算 優於 克拉瑪公式,階數越高越有感覺...
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.12.157
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1426697069.A.4CD.html
→
03/19 00:47, , 1F
03/19 00:47, 1F
→
03/19 00:50, , 2F
03/19 00:50, 2F
→
03/19 00:53, , 3F
03/19 00:53, 3F
推
03/19 01:37, , 4F
03/19 01:37, 4F
→
03/19 01:41, , 5F
03/19 01:41, 5F
→
03/19 19:41, , 6F
03/19 19:41, 6F
討論串 (同標題文章)