Re: [中學] 對稱多項式
※ 引述《Ericdion ( 由心出發 )》之銘言:
: 兩題,第296與309
: 想了幾天還是沒找到方法
: 請高手指教,感恩!!!
: http://i.imgur.com/1tTQBn5.jpg


: -----
: Sent from JPTT on my Asus PadFone T004.
296
暴力解,不知道有沒有更好的想法
===
用平方差公式 cos^2(α)-sin^2(β) = cos(α+β)cos(α-β)
而由根與係數 tanα+tanβ = a , tanαtanβ=b
可得tan(α)-tan(β)=√(a^2-4b)
分別由tan和差角,tan(α+β)= a/(1-b)
tan(α-β)= √(a^2-4b)/(1+b)
畫三角形,可知 cos(α+β)= (1-b)/√(a^2+(b-1)^2)
cos(α-β)= (1+b)/√(a^2-4b+(1+b)^2) = (1+b)/√(a^2+(b-1)^2)
兩者相乘即為所求
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 124.11.128.7
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1426687877.A.1CD.html
→
03/18 23:48, , 1F
03/18 23:48, 1F
→
03/18 23:49, , 2F
03/18 23:49, 2F
推
03/18 23:53, , 3F
03/18 23:53, 3F
→
03/18 23:54, , 4F
03/18 23:54, 4F
→
03/18 23:57, , 5F
03/18 23:57, 5F
→
03/19 00:00, , 6F
03/19 00:00, 6F
→
03/19 00:00, , 7F
03/19 00:00, 7F
→
03/19 00:02, , 8F
03/19 00:02, 8F
→
03/19 00:12, , 9F
03/19 00:12, 9F
推
03/19 01:36, , 10F
03/19 01:36, 10F
→
03/19 01:37, , 11F
03/19 01:37, 11F
→
03/19 01:39, , 12F
03/19 01:39, 12F
→
03/19 01:40, , 13F
03/19 01:40, 13F
→
03/19 03:17, , 14F
03/19 03:17, 14F
→
03/19 03:18, , 15F
03/19 03:18, 15F
→
03/19 03:20, , 16F
03/19 03:20, 16F
推
03/19 16:47, , 17F
03/19 16:47, 17F
推
03/19 16:49, , 18F
03/19 16:49, 18F
→
03/19 17:08, , 19F
03/19 17:08, 19F
→
03/19 17:09, , 20F
03/19 17:09, 20F
→
03/19 17:09, , 21F
03/19 17:09, 21F
討論串 (同標題文章)