Re: [中學] 對稱多項式

看板Math作者 (腦海裡依然記得妳)時間10年前 (2015/03/18 21:50), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/5 (看更多)
※ 引述《Ericdion ( 由心出發 )》之銘言: : 兩題,第296與309 : 想了幾天還是沒找到方法 : 請高手指教,感恩!!! : http://i.imgur.com/1tTQBn5.jpg
: http://i.imgur.com/3XhdqAp.jpg
: ----- : Sent from JPTT on my Asus PadFone T004. 309. (x + y + z) * (x^2 + y^2 + z^2) = (x^3 + y^3 + z^3) + [x^2(y + z) + y^2(z + x) + z^2(x + y)] = (x^3 + y^3 + z^3) - 24 (x + y + z)^2 = (x^2 + y^2 + z^2) + 2(xy + yz + zx) => 9 = (x^2 + y^2 + z^2) + 2(xy + yz + zx) 1/x + 1/y + 1/z = (xy + yz + zx)/(xyz) = -1/3 x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) = (x^3 + y^3 + z^3) - 24 + (x + y + z)*(- xy - yz - zx) => 9(xy + yz + zx) = - 24 + (-3)*(- xy - yz - zx) => xy + yz + zx = -4 => 9 = (x^2 + y^2 + z^2) + 2(xy + yz + zx) = (x^2 + y^2 + z^2) - 8 => x^2 + y^2 + z^2 = 17 => (x^3 + y^3 + z^3) - 24 = (x + y + z) * (x^2 + y^2 + z^2) = -3 * 17 = -51 => x^3 + y^3 + z^3 = -27 -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.252.195.140 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1426686601.A.7D6.html

03/18 21:59, , 1F
謝謝!!!!
03/18 21:59, 1F
文章代碼(AID): #1L2OA9VM (Math)
文章代碼(AID): #1L2OA9VM (Math)