Re: [微積] 大學積分

看板Math作者時間10年前 (2015/03/04 07:32), 編輯推噓3(304)
留言7則, 3人參與, 最新討論串2/2 (看更多)
w = ∫dy/(c-siny) 請問這怎麼積?? Set y = 2*atan(x) => dy = 2dx/(1+x^2) => x = tan(y/2) => siny = sin[2*atan(x)] = 2*sin[atan(x)]*cos[atan(x)] = 2x/(1+x^2) 分母 = c - siny = c - 2x/(1+x^2) = (c - 2x + cx^2)/(1+x^2) = [(cx)^2 - 2cx + 1) + (c - 1)]/c(1 + x^2) = [(cx - 1)^2 + (c - 1)]/c(1 + x^2) w = 2c∫dx/[(cx - 1)^2 + (c - 1)] = 2∫d(cx - 1)/[(cx - 1)^2 + (c - 1)];;; u = cx - 1 = 2∫du/[u^2 + (c - 1)] = [2/√(c - 1)]*atan[u/√(c - 1)] + C = [2/√(c - 1)]*atan[(cx - 1)/√(c - 1)] + C = [2/√(c - 1)]*atan{[c*tan(y/2) - 1]/√(c - 1)} + C = ans -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 118.169.36.172 ※ 文章網址: https://www.ptt.cc/bbs/Math/M.1425425522.A.619.html

03/04 18:58, , 1F
感謝~ 但為何要設y=2atan(x) 怎麼知道要乘2?
03/04 18:58, 1F

03/04 19:42, , 2F
這其實就只是半角代換 x = tan(y/2)
03/04 19:42, 2F

03/04 19:44, , 3F
也就是前篇推文講的萬能代換
03/04 19:44, 3F

03/04 19:44, , 4F
之所以如此稱呼是因為 sinθ cosθ tanθ
03/04 19:44, 4F

03/04 19:45, , 5F
皆可表為 tan(θ/2) 的有理式, 積分會方便很多
03/04 19:45, 5F

03/05 19:31, , 6F
考試時這題要特別分開討論c=1時的情況,不然會被扣
03/05 19:31, 6F

03/05 19:31, , 7F
03/05 19:31, 7F
文章代碼(AID): #1KzaHoOP (Math)
討論串 (同標題文章)
文章代碼(AID): #1KzaHoOP (Math)