Re: [中學] 一題遞迴關係
※ 引述《PR58 (批尺伍捌)》之銘言:
: 題目: x_n+1 - 3x_n + 2x_n-1 = 3, n>=1, x_0 =1, x_1 = 2
: h
: 右邊是常數,想說x_n設成A
: 但我覺得有點怪怪的,請問這題該怎麼解??
: 謝謝
[x_(n+1) - 2x_n] - [x_n - 2x_(n-1)] = 3
令B_n = x_(n+1) - 2x_n
B_n - B_(n-1) = 3
<B_n>為等差數列
B_0 = x_1 - 2x_0 = 2 - 2 = 0
=> B_n = 3n
=> x_(n+1) - 2x_n = 3n
=> x_(n+1) - 2^(n) x_1 = (3n)[2^(n) - 1] + 3[2^(n+1) - n2^n - 2]
=> x_(n+1) = 2^(n+1) + (3n)2^(n) - 3n + 3*2^(n+1) - 3n2^n - 6
= 2^(n+3) - 3n - 6
=> x_n = 2^(n+2) - 3n - 3
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 114.44.240.171
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1422888280.A.C26.html
※ 編輯: Honor1984 (114.44.240.171), 02/02/2015 23:12:49
推
02/02 23:03, , 1F
02/02 23:03, 1F
→
02/02 23:04, , 2F
02/02 23:04, 2F
→
02/02 23:13, , 3F
02/02 23:13, 3F
→
02/02 23:17, , 4F
02/02 23:17, 4F
推
02/03 00:34, , 5F
02/03 00:34, 5F
討論串 (同標題文章)