Re: [中學] 圓錐曲線(橢圓+雙曲線)一題
※ 引述《kobe761021 (奮戰)》之銘言:
: http://ppt.cc/RBsL
: 考卷的最後一題 (辛)
: 剛好喵到的~
: 想請問該如何解這題阿(連開頭都不知道怎麼下手)
: 感謝大家~
以直線 ABCD 為 x 軸, BC (或 AD) 中點為原點建立座標軸
令 AD = 2a, BC = 2c
不難看出 2a 是橢圓的長軸, 雙曲線的焦距
2c 是橢圓的焦距, 雙曲線的實軸
所以橢圓方程為 x^2 / a^2 + y^2 / (a^2-c^2) = 1
雙曲線方程為 x^2 / c^2 - y^2 / (a^2-c^2) = 1
聯立解之可得 x^2 = (2a^2c^2)/(a^2+c^2), y^2 = (a^2-c^2)^2/(a^2+c^2)
正方形條件表示 x^2 = y^2
故有 2a^2c^2 = (a^2-c^2)^2, 化簡為 a^4 - 4a^2c^2 + c^4 = 0
題目要求的是 c/a, 所以上式同除 a^4 得 (c/a)^4 - 4(c/a)^2 + 1 = 0
解之得 (c/a)^2 = 2±√3, 由題意 c/a < 1 故 2+√3 不合
最後就是 c/a = √(2-√3) = √((4-2√3)/2) = (√3 - 1)/√2 = (√6 - √2)/2
--
'You've sort of made up for it tonight,' said Harry. 'Getting the
sword. Finishing the Horcrux. Saving my life.'
'That makes me sound a lot cooler then I was,' Ron mumbled.
'Stuff like that always sounds cooler then it really was,' said
Harry. 'I've been trying to tell you that for years.'
-- Harry Potter and the Deathly Hollows, P.308
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.195.39.85
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1421158272.A.A95.html
推
01/13 22:17, , 1F
01/13 22:17, 1F
推
01/13 22:35, , 2F
01/13 22:35, 2F
→
01/13 22:35, , 3F
01/13 22:35, 3F
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):