Re: [分析] Global implicit function theorem

看板Math作者 (kezza)時間9年前 (2015/01/03 19:30), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/2 (看更多)
※ 引述《chopriabin ()》之銘言: : Suppose that $f=f(x,y)$ is $C^1$ in $x$ and $y$, There is no need to use TeX's markup here. Plain ASCII suffices. : where $x,y\in\mathbb{R}$ and $f(x_0,y_0)=0$. : Moreover, $\frac{\partial f(x,y)}{\partial y}>0$ for all $x,y\in\mathbb{R}$. : Could we conclude that $y$ can be solved implicitly from $f(x,y)=0$ : in terms of $x$ as $y=y(x)$ for all $x\in\mathbb{R}$? Yes in a neighbourhood of x=x_0. Globally, no, for example, f(x,y)=tanh(y)+x, x_0=y_0=0 and x>=1. : If the answer is no and an additional assumption is imposed, : i.e. we can obtain $y'(x)>0$ for all $x\in\mathbb{R}$ : by implicitly differentiating $f(x,y(x))=0$ with respect to $x$, : then these assumptions are enough to get the same conclusion? -- 『我思故我在』怎樣從法文變成拉丁文的: je pense, donc je suis --- René Descartes, Discours de la Méthode (1637) ego sum, ego existo --- ____, Meditationes de Prima Philosophia (1641) ego cogito, ergo sum --- ____, Principia Philosophiae (1644) -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.240.238.166 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1420284604.A.052.html
文章代碼(AID): #1KfzAy1I (Math)
文章代碼(AID): #1KfzAy1I (Math)