Re: [中學] 求值問題
※ 引述《mack (腦海裡依然記得妳)》之銘言:
: 已知 x, y, z 皆為實數,且滿足 x^2/(y+z) + y^2/(z+x) + z^2/(x+y) = 0,
: 求 x/(y+z) + y/(z+x) + z/(x+y) 之值為
: (謝謝指教)
設所求x/(y+z) + y/(z+x) + z/(x+y)=A
x^2/(y+z) + y^2/(z+x) + z^2/(x+y)
=[x^2/(y+z) - (y+z)]+[y^2/(z+x) - (z+x)]+[z^2/(x+y) - (x+y)]+(y+z)+(z+x)+(x+y)
=[x^2-(y+z)^2]/(y+z)+[y^2-(z+x)^2]/(z+x) +[z^2-(x+y)^2]/(x+y) +2(x+y+z)
=(x+y+z)[x-(y+z)]/(y+z) +(x+y+z)[y-(z+x)]/(z+x) +(x+y+z)[z-(x+y)]/(x+y)
+2(x+y+z)=(x+y+z)(A-1)=0
A=1或x+y+z=0
x+y+z=0時,A=-3。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 123.240.253.61
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1419580823.A.4D6.html
推
12/26 16:30, , 1F
12/26 16:30, 1F
哈哈,複製貼上沒弄好。
→
12/26 16:30, , 2F
12/26 16:30, 2F
→
12/26 19:26, , 3F
12/26 19:26, 3F
嗯,像樓上說得一樣。
※ 編輯: Tiderus (123.240.253.61), 12/26/2014 21:43:03
討論串 (同標題文章)