Re: [中學] 二次函數判斷係數
※ 引述《k32314282 (我只是打工的)》之銘言:
: 設二次函數y=ax^2+bx+c,a不為0,
: 圖形通過(-5,1)且與2x+3y=-6恰有一個交點,
: (A)a>0. (B)-2/3<b<0 (C)c<-2 (D)b^2-4ac>0
: (E)a-b+c>0
: 我想問B選項應該怎麼判斷,內容是高一範圍
透過畫圖可知 (-5,1)在2x+3y=-6下方
(A)圖形通過(-5,1)且與2x+3y=-6恰有一個交點,一定為下拋,所以a<0
(B)拋物線頂點x座標為 -b/2a 一定是負的,所以 b<0
但拋物線有可能通過(-5,1)與切點跨頂點兩側,或通過(-5,1)與切點皆在頂點右側
所以b的下限有兩個可能
(C)直線2x+3y=-6的y截距為(0,-2)且拋物線下拋與直線相切,所以c<-2
(D)拋物線下拋且要通過在x軸上的點(-5, 1),一定會交x軸兩交點,所以b^2-4ac>0
(E)f(-1) = a-b+c,且直線2x+3y=-6的x截距為(-3,0),拋物線在直線左側,
x=-1在右側,所以f(-1) = a-b+c < 0
故我認為此題答案應為(C)(D)
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.92.63.232
※ 文章網址: http://www.ptt.cc/bbs/Math/M.1412214379.A.24C.html
推
10/02 09:55, , 1F
10/02 09:55, 1F
→
10/02 09:56, , 2F
10/02 09:56, 2F
→
10/02 12:27, , 3F
10/02 12:27, 3F
→
10/02 12:35, , 4F
10/02 12:35, 4F
→
10/02 12:43, , 5F
10/02 12:43, 5F
→
10/02 12:44, , 6F
10/02 12:44, 6F
→
10/02 12:45, , 7F
10/02 12:45, 7F
→
10/02 12:48, , 8F
10/02 12:48, 8F
→
10/02 13:27, , 9F
10/02 13:27, 9F
→
10/02 13:54, , 10F
10/02 13:54, 10F
→
10/02 13:55, , 11F
10/02 13:55, 11F
→
10/02 13:56, , 12F
10/02 13:56, 12F
→
10/02 14:01, , 13F
10/02 14:01, 13F
→
10/02 14:08, , 14F
10/02 14:08, 14F
→
10/02 14:11, , 15F
10/02 14:11, 15F
→
10/03 00:39, , 16F
10/03 00:39, 16F
→
10/03 00:40, , 17F
10/03 00:40, 17F
→
10/03 00:58, , 18F
10/03 00:58, 18F
推
10/03 01:13, , 19F
10/03 01:13, 19F
→
10/03 01:14, , 20F
10/03 01:14, 20F
→
10/03 01:14, , 21F
10/03 01:14, 21F
→
10/03 01:38, , 22F
10/03 01:38, 22F
推
10/03 07:27, , 23F
10/03 07:27, 23F
討論串 (同標題文章)