Re: [微積] existence and uniqueness

看板Math作者 (QQ)時間11年前 (2014/04/13 03:44), 編輯推噓1(100)
留言1則, 1人參與, 最新討論串2/2 (看更多)
題目是要問有沒有存在唯一嗎? 且解存在的範圍? ------------------------------------------------------ <Theorem> (Existence and Uniqueness) if f:D → R^n , D open in R^(n+1) , f€C^1(D) (其實不用那麼強 不過你這題符合) then for all (t_0,x_0)€D, the initial value problem {x'(t)=f(t,x(t)) {x(t_0)=x_0 has unique maximal solution defined on an open interval. That is, (1) there exists a solution s(t) defined on (a,b) (a maybe -inf, b maybe +inf) such that if p(t) is a solution defined on I (an interval in R) then I is included in (a,b) (2) if p(t), q(t) are two solutions defined on I, J respectively then p(t)=q(t) on the intersection of I and J Moreover, if D=R^(n+1) , f is bounded function (│f│<= M ) then (a,b) = (-inf, +inf) = R ---------------------------------------------------------- 所以你這題的f(t,x)=sin(tx) , 顯然C^1(R^2) 所以存在唯一解在整個R -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.230.134.192 ※ 文章網址: http://www.ptt.cc/bbs/Math/M.1397331865.A.91B.html

04/13 15:12, , 1F
萬分感謝 十分詳細
04/13 15:12, 1F
文章代碼(AID): #1JIPUPaR (Math)
文章代碼(AID): #1JIPUPaR (Math)