Re: [線代] A*A=AA*, A^2u=0→Au=0

看板Math作者 (真‧220)時間11年前 (2014/03/01 23:16), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串2/2 (看更多)
(A^2)u = 0 => A(Au) = 0 i.e. Au lies in the range of A, donote by R(A), and lies in the null space of A, donote by N(A). And N(A) = R(A)^⊥ (if A is normal) ...(*) => Au also lies in R(A)^⊥ => Au = 0. Q.E.D. --------------------------------------------------------- Proof of (*): Suppose u lies in R(A)^⊥, i.e. <u,Av> = 0 for all v in V. Then <(A^*)u,v> = 0 for all v in V. => (A^*)u = 0 => Au = 0, i.e. u lies in N(A). Conversely, suppose u lies in N(A), i.e. Au = 0 => (A^*)u = 0 and <(A^*)u,v> = <u,Av> = 0 for all v in V. Hence, u lies in R(A)^⊥. Q.E.D. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.34.27.65

03/02 00:11, , 1F
強!
03/02 00:11, 1F

03/03 14:30, , 2F
謝謝!!
03/03 14:30, 2F
文章代碼(AID): #1J4Vdcxf (Math)
文章代碼(AID): #1J4Vdcxf (Math)