[代數] ring

看板Math作者 (B型獅子座)時間12年前 (2014/02/11 15:33), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串3/4 (看更多)
自修代數有問題不清楚,特上來求教各位大大 Consider the ring Z[√-3] (1) Prove that 5 is an irreducible element in Z[√-3]. (2) Prove that 5 is not a prime element in Z[√-3]. (3) Is Z[√-3] a unique factorization domain? Explain your answer. (4) Is Z[√-3]/(5) a field? Explain your answer. (1) Let R=Z[√-3]. The set of units in R={1,-1, i, -i} Suppose there are a+b√-3, c+d√-3 in R such that (a+b√-3)(c+d√-3)=5. Take norm we obtain (a^2+3b^3)(c^2+3d^2)=25. If a^2+3b^2=1, then a+b√-3 is a unit. If a^2+3b^2=25, then c+d√-3 is a unit. And no integers satisfy a^2+3b^2=5. Hence 5 is irrecudcible. 請問這樣寫可以嗎? (2) R is a ring. a is prime in R if a|bc implies a|b or a|c. (b, c in R) 若要證 5 is not prime, 那我應該找到一組 a+b√-3, c+d√-3 使得 5|(a+b√-3)(c+d√-3) 但 5 不整除 a+b√-3 或 c+d√-3. 但是我找不到這樣的a+b√-3, c+d√-3. 所以 5 is prime in Z[√-3]? 應該怎麼寫好呢? (3) 我有看到一個定理: If R is a UFD, then a in R is an irreducible element if and only if a is a prime element. 應該是用這個證吧? 但該怎麼寫呢? (4) 因為 Z[√-3] 是 a commutative ring with 1. 應該是利用以下定理: R/M is a field if and only if M is a maximal ideal in R. 所以目標是要證 (5) 是一個 maximal ideal嘍? 感謝各位大大賜教 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.78.75.41
文章代碼(AID): #1I-T9Zxf (Math)
討論串 (同標題文章)
完整討論串 (本文為第 3 之 4 篇):
代數
1
4
代數
代數
1
3
代數
1
1
文章代碼(AID): #1I-T9Zxf (Math)