Re: 微積

看板Math作者 (八字-風水-姓名學)時間12年前 (2013/11/23 21:00), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《nothinger (小魚)》之銘言: : ∫(secx)^3(tanx)^10dx Use the identity (tanx)^2 = (secx)^2 - 1, we have ∫(secx)^3 [(secx)^2 - 1]^2 dx. Then the reduction formula for integral ∫(secx)^n dx = ∫(secx)^(n-2) (secx)^2 dx with integration by parts gives the desired result. : ∫(sinx)^10(cosx)^30dx Use half-angle formula, we have (sinx)^2 = (1 - cos2x)/2 and (cosx)^2 = (1 + cos2x)/2. By binomial theorem and substitution method, of integral, we are done. : how to do these? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.138.114
文章代碼(AID): #1IaARgJb (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 3 篇):
文章代碼(AID): #1IaARgJb (Math)