Re: [微積] lnx極限
※ 引述《kevin10630 (威猛先生)》之銘言:
: 證:
: lim xlnx = 0
: x→0+
: 要用夾擠定理證明
: 爬過文只有羅畢達證法
: 希望版友幫個忙
Let x = e^(-t)
lim xlnx = lim (-t)e^(-t) = - lim t/e^t
x->0+ t->∞ t->∞
Note that e^t > t^2/2, and t/e^t > 0 for x > 0
0 < t/e^t < 2/t, lim 2/t = 0
t->∞
By The Squeeze Theorem
lim xlnx = 0
x->0+
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.46.117.24
推
11/19 23:39, , 1F
11/19 23:39, 1F
不是寫在社團上給你看了嗎?
令 f(x) = e^x - (x^2/2)
f'(x) = e^x - x > 0 for x > 0
故 f(x) 為一遞增函數, 且 f(0) = e^0 - 0 = 1 > 0
f(x) = e^x - (x^2/2) > 0 在 x > 0 恆成立
故知 e^x > x^2/2
※ 編輯: BaBi 來自: 114.46.117.24 (11/19 23:45)
→
11/19 23:50, , 2F
11/19 23:50, 2F
→
11/19 23:55, , 3F
11/19 23:55, 3F
推
11/19 23:57, , 4F
11/19 23:57, 4F
→
11/20 08:13, , 5F
11/20 08:13, 5F
推
11/20 10:03, , 6F
11/20 10:03, 6F
啊啊, 是令 x = e^(-t) 啦!!
後面是對的, 令的時候符號寫反了…(遮臉)
→
11/20 10:25, , 7F
11/20 10:25, 7F
※ 編輯: BaBi 來自: 114.46.140.6 (11/20 11:38)
推
11/20 12:37, , 8F
11/20 12:37, 8F
→
11/20 12:38, , 9F
11/20 12:38, 9F
推
11/20 12:43, , 10F
11/20 12:43, 10F
→
11/20 12:43, , 11F
11/20 12:43, 11F
→
11/20 12:47, , 12F
11/20 12:47, 12F
推
11/20 13:27, , 13F
11/20 13:27, 13F
→
11/20 13:28, , 14F
11/20 13:28, 14F
→
01/02 15:36,
7年前
, 15F
01/02 15:36, 15F
→
07/07 11:39,
6年前
, 16F
07/07 11:39, 16F
討論串 (同標題文章)