[微積] 重積分
x y z
求 (──)^1/2 + (──)^1/2 + (──)^1/2 < 1 之體積
a b c =
我的作法是
令 x = au^4 , y = bv^4 , z = cw^4
|J| = 64abc(uvw)^3
再令 u = rsin(f)cos(g)
v = rsin(f)sin(g)
w = rcos(f)
(抱歉,因為太長,我把式子分兩行)
2兀 兀 1
V = 64abc ∫ ∫ ∫ r^3sin^3(f)cos^3(g)*r^3sin^3(f)sin^3(g)
0 0 0 +++^^^^^^^ ------- +++^^^^^^^ --------
*r^3cos^3(f)*r^2sin(f) drdfdg
+++^^^^^^^^ +++^^^^^^
2兀 兀 1
= 64abc( ∫sin^3(g)cos^3(g)dg )(∫ sin^7(f)cos^3(f)df )(∫r^11 dr)
0 0 0
問題一:我本來是把前兩個積分式變成 Beta function, 可是發現這樣好像是錯的,
請問有辦法用Beta做嗎?要如何修正?
問題二:我後來去用google看了sin^7(f)cos^3(f)的圖形
發現如果從 0 積到 兀 ,會是0耶???
圖:
https://www.google.com.tw/#q=(sin(x))%5E7(cos(x))%5E3
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 36.232.198.248
→
11/08 00:25, , 1F
11/08 00:25, 1F
→
11/08 00:25, , 2F
11/08 00:25, 2F
推
11/08 02:04, , 3F
11/08 02:04, 3F
→
11/08 02:06, , 4F
11/08 02:06, 4F
→
11/08 02:07, , 5F
11/08 02:07, 5F
→
11/08 02:09, , 6F
11/08 02:09, 6F
→
11/08 02:10, , 7F
11/08 02:10, 7F
→
11/08 09:36, , 8F
11/08 09:36, 8F
→
11/08 09:37, , 9F
11/08 09:37, 9F
討論串 (同標題文章)