Re: [中學] 國二因式分解
※ 引述《cecilia0305 (Cecilia)》之銘言:
: 1.求 (2y+1)(3y-1)(4y-1)(y+1)-36y^4的因式分解
= [(2y+1)(4y-1)][(y+1)(3y-1)]-36y^4
= (8y^2+2y-1)(3y^2+2y-1) - 36y^4
= 24y^4 + 11y^2(2y-1) + (2y-1)^2 - 36y^4
= -12y^4 + 11y^2(2y-1) + (2y-1)^2
12y^2 \/ (2y-1)
-1y^2 /\ (2y-1)
= (12y^2+2y-1)(-y^2+2y-1)
= -(12y^2+2y-1)(y-1)^2 (前一因式由一次因式檢驗法知無整係數一次因式)
: 2.求(x+y)(x+1)(y+1)+xy的因式分解
= (x+y)(xy+x+y+1)+xy
= (x+y)^2 + (x+y)(xy+1) + xy
(x+y) \/ xy
(x+y) /\ 1
= (x+y+xy)(x+y+1)
: 高雄某私立國中講義題目阿> <
--
LPH [acronym]
= Let Program Heal us
-- New Uncyclopedian Dictionary, Minmei Publishing Co.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.41.35.96
推
10/20 17:53, , 1F
10/20 17:53, 1F
推
10/20 20:32, , 2F
10/20 20:32, 2F
討論串 (同標題文章)