[微積] 有關微分存在兩題
1. f(x)= x^2 sin(1/x) if x=/=0
= 0 if x=0
a) proof f differentible at 0 and f`(0)=0
b) show f`(x) is not continuous at 0
a)我是用 lim x->a (f(x)-f(a))/(x-a) exist and finite then differentible at a
得lim x->0 xsin(1/x) since sin(1/x)=< 1 for all x
lim x->0 xsin(1/x) =< x = 0 so differentible at a and f`(0)=0
b) differentiate f(x) get f`(x)= 2xsin(1/x) - cos(1/x)
when x=0 f`(0)= -cos(1/0) not define
f`(0)=/= lim x->0 f`(x) imply not cts at 0
對於B的部分不確定這樣寫可不可以
且想問為什麼用極限算出來的結果會和公式算出來的有差別
2. f: (0.2) -> R be continunous and f`(x) exist for all x in (0.1)U(1.2)
if lim x->1 f`(x)=L show f`(1) exist and f`(1)=L
不確定這題是否用左極限右極限存在且相等則導數存在
因lim x->1 f`(x)=L 可知在x=1左右極限存在且相等 所以f`(1)存在
且左右極限之值即為f`(1)之值
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.34.200.32
→
07/17 17:18, , 1F
07/17 17:18, 1F
→
07/17 17:18, , 2F
07/17 17:18, 2F
→
07/17 17:19, , 3F
07/17 17:19, 3F
→
07/17 17:20, , 4F
07/17 17:20, 4F
→
07/17 17:20, , 5F
07/17 17:20, 5F
→
07/17 17:21, , 6F
07/17 17:21, 6F
→
07/17 17:23, , 7F
07/17 17:23, 7F
→
07/17 17:23, , 8F
07/17 17:23, 8F
→
07/17 17:24, , 9F
07/17 17:24, 9F
→
07/17 17:25, , 10F
07/17 17:25, 10F
→
07/17 17:26, , 11F
07/17 17:26, 11F
→
07/17 17:26, , 12F
07/17 17:26, 12F
→
07/17 17:42, , 13F
07/17 17:42, 13F
→
07/17 17:43, , 14F
07/17 17:43, 14F
→
07/17 21:03, , 15F
07/17 21:03, 15F
→
07/17 21:46, , 16F
07/17 21:46, 16F
→
07/17 21:46, , 17F
07/17 21:46, 17F
推
07/17 23:06, , 18F
07/17 23:06, 18F
→
07/17 23:07, , 19F
07/17 23:07, 19F
→
07/18 01:22, , 20F
07/18 01:22, 20F
→
11/10 12:02, , 21F
11/10 12:02, 21F
→
01/02 15:28,
7年前
, 22F
01/02 15:28, 22F
→
07/07 11:15,
6年前
, 23F
07/07 11:15, 23F