[分析] 實變sequential convergene/compactness

看板Math作者 (YES)時間12年前 (2013/05/26 13:39), 編輯推噓1(102)
留言3則, 3人參與, 最新討論串1/2 (看更多)
1. Let 1<p<∞ and f_0 belong to L^p(R). For each natural number n, define f_n(x)=f_0(x-n) for all x. Define f=0 on R. Show that {f_n}-->f in L^p(R). Is this true for p=1? 2. Let [a,b] be a nondegenerate closed, bounded interval. In the Banach space C[a,b], normed by the maximum norm, find a bounded sequence that fails to have any strongly convergent subsequence. 感謝各位實變高手能給我一些解答或方向! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 124.11.168.132

05/26 18:04, , 1F
1. 你想問的應該是{f_n}--ゝf?
05/26 18:04, 1F

05/26 18:20, , 2F
看來是weak conv.沒錯,就直接證明XD
05/26 18:20, 2F

05/31 09:47, , 3F
2.就直接考慮\chi_{(2^{-n},2^{-n+1})}即可
05/31 09:47, 3F
文章代碼(AID): #1HeQ0dZv (Math)
文章代碼(AID): #1HeQ0dZv (Math)