[分析] 實變sequential convergene/compactness
1. Let 1<p<∞ and f_0 belong to L^p(R). For each natural number n, define
f_n(x)=f_0(x-n) for all x. Define f=0 on R. Show that {f_n}-->f in L^p(R). Is
this true for p=1?
2. Let [a,b] be a nondegenerate closed, bounded interval. In the Banach space
C[a,b], normed by the maximum norm, find a bounded sequence that fails to
have any strongly convergent subsequence.
感謝各位實變高手能給我一些解答或方向!
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.11.168.132
→
05/26 18:04, , 1F
05/26 18:04, 1F
→
05/26 18:20, , 2F
05/26 18:20, 2F
推
05/31 09:47, , 3F
05/31 09:47, 3F
討論串 (同標題文章)
以下文章回應了本文:
完整討論串 (本文為第 1 之 2 篇):