Re: [中學] 幾何空間中的最短距離
※ 引述《ericakk (ericakk)》之銘言:
: 空間中兩點 A(0,-7,1) B(3,2,2)
: __ __
: 在x軸上找一點P,使得PA+PB最短,P點是?
: 答案:(15/7,0,0)
minimize
(x^2+7^2+1)^{1/2} + ((x-3)^2+2^2+2^2)^{1/2}
(x^2+50)^{1/2}+((x-3)^2+8)^{1/2}
You can transform this problem to
" A(0,√50), B(3,√8)
Find P on x-axis to make PA+PB minimum."
optical theorem, mirror image of B is C(3,-√8)
AC line (0,√50) + t (-3,(√50 + √8))
intersects x-axis at t = -√50 / (√50 + √8) = -5/(5+2)=-5/7
hence, minimum occurs at x = 15/7
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.194.96.239
推
04/18 15:52, , 1F
04/18 15:52, 1F
推
04/19 13:39, , 2F
04/19 13:39, 2F
討論串 (同標題文章)