Re: [中學] 一題國中資優競賽題

看板Math作者 (腦海裡依然記得妳)時間13年前 (2013/03/02 12:07), 編輯推噓0(002)
留言2則, 1人參與, 最新討論串2/2 (看更多)
※ 引述《spoke (熱血少年)》之銘言: : x^2+xy+y^2=1 x^2-xy+y^2=A 求A的最大值與最小值的和?Ans:10/3 : 可以的話請用國中生可以解的方法解 請數學之神指教指教 : by一位苦腦的國中數學老師 (x^2+xy+y^2) - (x^2-xy+y^2) = 2xy = 1-A => xy = (1-A)/2 => (x+y)^2 = (3-A)/2 ≧ 0 => A = 3 為最大值 (x-y)^2 = (3A-1)/2 ≧ 0 => A = 1/3 為最小值 => 所求 = 3 + 1/3 = 10/3 A = 3時 => (x+y)^2 = 0 => x+y = 0 => y = -x => x^2+xy+y^2 = x^2 = 1 => x = ±1 => (x,y) = (1,-1) or (-1,1) A = 3時 => (x-y)^2 = 0 => x-y = 0 => y = x => x^2+xy+y^2 = 3x^2 = 1 => x = ±1/√3 => (x,y) = (1/√3,1/√3) or (-1/√3,-1/√3) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.252.206.172

03/02 16:07, , 1F
其實這種題目都要擔心一下'='會不會成立比較好,
03/02 16:07, 1F

03/02 16:08, , 2F
不過感覺現在的國中高中都不管這個……
03/02 16:08, 2F
※ 編輯: mack 來自: 111.252.206.172 (03/02 19:32) ※ 編輯: mack 來自: 111.252.206.172 (03/02 19:37)
文章代碼(AID): #1HCNhk-S (Math)
文章代碼(AID): #1HCNhk-S (Math)