Re: [問題] 工學院的PDE跟數學系的PDE有甚麼差?

看板Math作者 (翔爸)時間13年前 (2012/12/23 05:05), 編輯推噓12(1205)
留言17則, 14人參與, 6年前最新討論串2/2 (看更多)
※ 引述《a88241050 (再回頭已是百殘身)》之銘言: : 我現在有修工學院的PDE : 因為之前修過系上開的微分方程 : 工學院的PDE大致上對我來說沒甚麼問題 : 教授也說只要有微分方程的基礎就可以修 : 而我們數學系也有開PDE的課程 : 但是是開在研究所的... : 聽說修數學系的PDE需要高微和複變等等分析的基礎 : 高微可說是我的罩門,想當初重修後才低空飛過 : 不知道數學系開的PDE到底是比工學院的PDE難多少? : 竟然還需要分析的先備知識 : 有人能幫忙解惑嗎? : 3Q PDE在大學的Level主要的內容差別並不大,但細節可能會因為老師不同, 差異會很大。在大學Level的PDE主要還是教怎麼解,從分類PDE開始, 特徵法解一些PDE,接著主要三種elliptic: Laplace算子,Parabolic: heat equation, Hyperbolic: wave equation。但在台灣數學系大學部開 PDE課的可能比較少,通常都是開導論而已。雖然講的內容可能差不多, 由於數學系的分析基礎比較多,就可能會證明為何積分是收斂,和是收斂。 因為通常PDE的解的表示主要以級數或積分為主,要驗證得到的東西是解, 必須要證明積分or級數和與微分是可以互換。通常非數學系的科系的PDE, 通常不管這麼多,先微分去驗證所得到的是微分方程的解了再說。而因為 PDE的類型不同,所使用的方法也很不同。 研究所的PDE會引入Sobolev空間,也就是為了研究PDE的解的空間。通常 非數學系的PDE通常找到解之後其他都不管了,不管PDE解的regularity 是如何(可微分?或者是片段可微分?或是在某種意義下可微?)理由還是那 句老話找到"解"之後不管三七二十一都給他微了。通常也把Dirac函數 當函數來作。 通常PDE都是透過構造某種泛涵之後,利用泛涵的特質,得到PDE的弱解。 也就是某種distribution意義下的解。如果能夠得知這方程的解具有 高程度以上的光滑性值,那麼在"古典意義下",他就是解。通常橢圓方程 的解都具有這種特質。例如:如果△ f=0 (在分配意義下),那麼f必定是光 滑函數(Weyl regularity)。 而更重要的是我們希望處理的PDE通常都是非線性的,如果可以找到解, 表示我們很幸運,通常90%以上的非線性PDE有沒有解都有問題。所以PDE 裡面首先要知道是不是有解,接著是否解唯一。很多時候你就是必須處理 解的存在性問題。有了"解"之後就是光滑性了。 在PDE中,還有一些相當重要的嵌入定理。這些嵌入定理主要是為了處理 方程的解的光滑性。(這些嵌入定理主要是一些不等式。)所以我們就必須常 用到實分析中常用到的一些不等式,這些不等式可以讓我們知道函數空間 如何的去嵌入到另外一個函數空間。(讓我姑且通稱他們為Sobolev inequality 或是Sobolev embedding) 雖然我講得很短,但是其實這些內容相當豐富。數學系跟其他科系處理問題 的方式相當不同,所以要學好PDE是必須要具備一定程度的分析學知識才有辦法。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 109.65.52.19

12/23 11:42, , 1F
12/23 11:42, 1F

12/23 11:59, , 2F
12/23 11:59, 2F

12/23 12:43, , 3F
感謝指導@@
12/23 12:43, 3F

12/23 12:53, , 4F
推!
12/23 12:53, 4F

12/23 13:08, , 5F
h大 好強@_@!
12/23 13:08, 5F

12/23 14:42, , 6F
推推 推推 推推 XD
12/23 14:42, 6F

12/23 16:32, , 7F
12/23 16:32, 7F

12/23 20:58, , 8F
推推!
12/23 20:58, 8F

12/23 21:40, , 9F
大推!
12/23 21:40, 9F

12/23 22:30, , 10F
12/23 22:30, 10F

12/24 00:47, , 11F
推一個
12/24 00:47, 11F

12/28 02:42, , 12F
GOOD
12/28 02:42, 12F

08/13 17:20, , 13F
08/13 17:20, 13F

09/17 15:15, , 14F
09/17 15:15, 14F

11/10 11:12, , 15F
推推 推推 推推 XD https://daxiv.com
11/10 11:12, 15F

01/02 15:12, 7年前 , 16F
感謝指導@@ https://daxiv.com
01/02 15:12, 16F

07/07 10:25, 6年前 , 17F
07/07 10:25, 17F
文章代碼(AID): #1GrY2EFs (Math)
文章代碼(AID): #1GrY2EFs (Math)