[代數] automorphism, ring

看板Math作者 (ssss)時間13年前 (2012/11/09 23:04), 編輯推噓0(002)
留言2則, 1人參與, 最新討論串1/3 (看更多)
繼續請教大家....^^" 1. If F is the field of rational numbers, then the number of distinct automorphisms of F is 2. An automorphism g of a field F is a 1-1 mapping of F onto itself s.t. g(a+b)=g(a)+g(b), and g(ab)=g(a)g(b), for all a,b in F. 我現在想到的是trivial mapping 和 identity mapping, 但是沒有其他的了嗎?怎麼知道只有這兩個呢? -------------------------- 2. If S is a ring that s=s^2 for each s in S. Which of the following must be true? a. s+s=0 for each s in S b. (s+t)^2=s^2+t^2 for each s,t in S c. S is commutative 答案: a,c 我的做法如下 但做到一半卡住了 s=s*s as given, add (-s) to both sides, s*s-s=0 and b/c left and right distribution law hold in a ring so s*(s-1)=0, 但是到這邊似乎又不能說s=0 or s=1, 因為有可能有0 divisor. 非常謝謝幫忙!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.3.154.49

11/09 23:21, , 1F
第1題trivial不算 沒有1-1 onto 第2題b是對的
11/09 23:21, 1F

11/09 23:22, , 2F
而且第2題ring不一定有unity
11/09 23:22, 2F
文章代碼(AID): #1GdHjZyz (Math)
文章代碼(AID): #1GdHjZyz (Math)