Re: [微積] 兩題高微

看板Math作者 (とある煞氣の光希)時間13年前 (2012/11/06 12:25), 編輯推噓1(104)
留言5則, 3人參與, 最新討論串2/3 (看更多)
※ 引述《viviviccc (祖)》之銘言: : 小弟最近要交功課遇上了兩個問題 : 課本後面也沒有詳解 : 所以想上來MATH版向各位高手請教一下該怎麼解題 : http://i.imgur.com/DXmBj.jpg
: 8.8.8B小題 8.3.8B "=>"True. Let V be closed. For all x∈V, define a closed ball B_x=B(x,d(x,bd(V))). [p.s. d(x,S)=inf{||x-y|| :y∈S}, bd(V)=boundary of V] We will show that V=∪_(x∈V) B_x. "ㄈ" Trivial. "コ" Assume that there is some x∈V such that B_x is not contained in V. Then it means y!∈V for some y∈B_x. Since V is closed, y is an exterior point of V. Consider the line segment L connecting x and y. Then L must intersect V by a boundary point, say z. Thus, we have the result that d(x,bd(V))≧||x-y||>||x-z||≧d(x,bd(V)), →← Therfore, B_xㄈV for all x∈V => Vコ∪_(x∈V) B_x. By the two proofs, V=∪_(x∈V) B_x. "<="False. Counterexample:n=1, B_k=[0,1-1/k] for all intergers k>1. Then V=∪_(k>1) B_k=[0,1) is not closed. : http://i.imgur.com/RU0uo.jpg
: 8.4.11A小題 U is relatively open in E <=> U=O∩E for some open set OㄈR^n. Since UㄈE^0, U=O∩E^0. [otherwise U contains some boundary points of E] Then U is open in R^n. Thus, U∩bd(U)=ψ. : 可以的話麻煩盡量詳細一點 : 小弟只有微薄1000P幣可以報答 : 謝謝了 沒問題的話,1000P可以入戶了 -- posted from SONY bbs reader on my Playstation®Vita -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 115.165.203.130

11/07 01:57, , 1F
秒殺高微了XD
11/07 01:57, 1F

11/07 05:21, , 2F
我的1000P還沒拿到ˊˋ
11/07 05:21, 2F

11/07 16:18, , 3F
哈囉我給你囉
11/07 16:18, 3F

11/07 16:31, , 4F
3Q 你看看你課本的closed ball定義半徑有沒有為正
11/07 16:31, 4F

11/07 16:32, , 5F
有的話我第一條就當廢話
11/07 16:32, 5F
文章代碼(AID): #1Gc94Yoy (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 3 篇):
文章代碼(AID): #1Gc94Yoy (Math)