Re: [中學] 負負得正的證明 =D

看板Math作者 (考個沒完)時間13年前 (2012/08/23 23:20), 編輯推噓0(001)
留言1則, 1人參與, 最新討論串3/5 (看更多)
※ 引述《cecilia0305 (Cecilia)》之銘言: : 有沒有算式 : 表達負負得正的證明??? 引理1:0 乘以任意實數皆為 0. 證明: 任取實數 a, 0*a = (1-1)*a = a - a = 0. 引理2:實數的相反數的是唯一的 證明:任取一個實數 a. 設 b, c 都是 a 的相反數, 則 b = 0+b = (c+a)+b = c+(a+b) = c+0 = c. 定理: (-1)*(-1) = 1 證明:由上面引理知僅需證明 -1 是 (-1)*(-1) 的相反數, 即 (-1)*(-1) + (-1) = 0. 這是因為 (-1)*(-1) + (-1)*1 = (-1)*[(-1)+1] = (-1)*0 = 0 (用到引理1). 故由引理2 知 (-1)*(-1) = 1. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.160.174.97

08/24 10:34, , 1F
倒果為因了 ...
08/24 10:34, 1F
文章代碼(AID): #1GDafEOk (Math)
討論串 (同標題文章)
文章代碼(AID): #1GDafEOk (Math)