Re: [線代] 矩陣的問題
※ 引述《Honor1984 (希望願望成真)》之銘言:
: ※ 引述《zako1113 (那個人)》之銘言:
: : If A is a skew-symmetric real matrix, prove that (I+A) is invertible.
: : (Hint: show that (I+A)X = 0 cannot have non-zero solution X in R^n)
: : 用書內的提示
: : (I+A)X = 0 for some non-zero X
: : => AX = -X
: : => -1 is an eigenvalue of A
: : 請問之後要怎麼做呢?
: 設存在非零v
: (I+A)v = 0
: Av = -v --- (1)
: A^T = -A --- (2)
: (1) => v^T A^T = -v^T
: => v^T A = v^T
: => v^T A v = v^T v > 0
: 但是 根據假設 Av = -v
: => - v^T v = v^T v
: => v只能為0 與原假設矛盾
: 故原命題得證
Another way,
Claim:〈Av,v〉= 0, where A is a skew-symmetric real matrix and v in R^n.
(I+A)X = 0 => AX = -X
And 0 =〈AX,X〉= -〈X,X〉=> X = 0.
∴ I+A is invertible. Q.E.D.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 36.233.123.206
→
07/21 17:55, , 1F
07/21 17:55, 1F
→
07/21 18:08, , 2F
07/21 18:08, 2F
→
07/21 18:45, , 3F
07/21 18:45, 3F
→
07/22 18:16, , 4F
07/22 18:16, 4F
→
07/22 18:29, , 5F
07/22 18:29, 5F
→
07/22 18:30, , 6F
07/22 18:30, 6F
→
07/22 18:35, , 7F
07/22 18:35, 7F
→
07/22 18:56, , 8F
07/22 18:56, 8F
→
07/22 19:17, , 9F
07/22 19:17, 9F
討論串 (同標題文章)