Re: [線代] 正定矩陣的問題

看板Math作者 (Paul)時間13年前 (2012/07/12 14:11), 編輯推噓0(000)
留言0則, 0人參與, 最新討論串2/3 (看更多)
※ 引述《mrporing (波利先生)》之銘言: : 有個證明題是這樣的: : A為一個n*n的正定實數方陣,B是一個m*n的實數矩陣且為滿秩(full rank),則證明 : BAB^(T)也會是正定。 (i) Obviously, if m > n, it is not true (ii) if m <= n, it is yes Proof of (ii) if not, then exists a nonzero row vector x such that x.B.A.B^T.x^T = 0 denote y = x.B then y.A.y^T = 0 but A is positive definite hence, y = 0 that is, x.B = 0 has a nontrivial solution. Contradiction. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 27.147.57.77
文章代碼(AID): #1F_cgll7 (Math)
文章代碼(AID): #1F_cgll7 (Math)