Re: [分析] 一題點拓

看板Math作者 (linshihhua)時間14年前 (2012/03/19 02:45), 編輯推噓2(200)
留言2則, 2人參與, 最新討論串2/2 (看更多)
※ 引述《honsan (honsan)》之銘言: : Let ordered pair (X,d) be a metric space, and Sr(x) is an open ball, : proof: diam(Sr(x)) <= 2r. diam(S) = sup{d(x,y)|x,y belong to S} : This is my provement: : Let y, z belongs to Sr(x), then d(y,x) < r and d(x,z) < r : -> d(y,z) <= d(y,x)+d(x,z) < 2r (triangle inequality) : so every element in {d(y,z)|y,z belong to Sr(x)} is smaller than 2r... : 我證明到這裡就卡住了,請問要怎麼樣才能推到結論呢? suppose diam>2r say diam=2r+a a>0 then 2r+a>=d(y,z)>2r+a/2 for some y,z in Sr(x) contradiction -- 李ㄆㄧㄚˋ眉頭一皺! ◢███◣ ████ ◢████◣ ██ 驚覺南方公園早被停播! ▂▂▂▂▂ ███ ██████ ◤ ◥ 深深覺得黑棒一定不清純! ㄟˇㄏ ㄟˇㄏ ㄟˇㄏ ㄟˇㄏ 原創 ψindiaF4 Happy ㄧ..ㄧ █ ㄧ..ㄧ ㄧ..ㄧ ㄧ..ㄧ ψdiabloq13 Push /︷\ ◢ /︷\ /︷\ ◢ .◣◢.改圖 ψfreefrog Doll -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.170.59.1

03/19 11:22, , 1F
Good proof!
03/19 11:22, 1F

03/19 22:35, , 2F
perfect!
03/19 22:35, 2F
※ 編輯: linshihhua 來自: 36.233.106.222 (07/31 02:53)
文章代碼(AID): #1FPYr2u7 (Math)
討論串 (同標題文章)
本文引述了以下文章的的內容:
完整討論串 (本文為第 2 之 2 篇):
文章代碼(AID): #1FPYr2u7 (Math)