[分析] 一題點拓

看板Math作者 (honsan)時間14年前 (2012/03/18 23:56), 編輯推噓2(206)
留言8則, 6人參與, 最新討論串1/2 (看更多)
Let ordered pair (X,d) be a metric space, and Sr(x) is an open ball, proof: diam(Sr(x)) <= 2r. diam(S) = sup{d(x,y)|x,y belong to S} This is my provement: Let y, z belongs to Sr(x), then d(y,x) < r and d(x,z) < r -> d(y,z) <= d(y,x)+d(x,z) < 2r (triangle inequality) so every element in {d(y,z)|y,z belong to Sr(x)} is smaller than 2r... 我證明到這裡就卡住了,請問要怎麼樣才能推到結論呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.33.206.141

03/19 00:15, , 1F
taking sup
03/19 00:15, 1F

03/19 00:22, , 2F
What does you mean?
03/19 00:22, 2F

03/19 00:26, , 3F
{d(x,y)}這些東西取了sup會有等於2r的情況出現
03/19 00:26, 3F

03/19 00:32, , 4F
意思是說不等式那行有錯?
03/19 00:32, 4F

03/19 00:44, , 5F
sup{d(x,y)| x,y 屬於 Sr(x)}<= 2r
03/19 00:44, 5F

03/19 00:44, , 6F
這樣不就結束了嗎?
03/19 00:44, 6F

03/19 01:00, , 7F
It is easy to see...
03/19 01:00, 7F

03/19 09:14, , 8F
trivial....
03/19 09:14, 8F
文章代碼(AID): #1FPWN6De (Math)
討論串 (同標題文章)
文章代碼(AID): #1FPWN6De (Math)