[微積] 請教一題不連續但導數存在的例子
設函數f(x)={ x-1 , x>=1 顯然在x=1不連續.
{ x^2-x+2 , x< 1
但導數左極限f'(1-)=1 ,右極限f'(1+)=1
故在x=1的導數f'(1)=1 存在.
是否可成為"可微但不連續"的例子??
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 163.21.252.206
→
03/15 16:39, , 1F
03/15 16:39, 1F
→
03/15 16:54, , 2F
03/15 16:54, 2F
推
03/15 17:04, , 3F
03/15 17:04, 3F
→
03/15 17:10, , 4F
03/15 17:10, 4F
→
03/15 17:10, , 5F
03/15 17:10, 5F
→
03/15 17:30, , 6F
03/15 17:30, 6F
推
03/15 17:38, , 7F
03/15 17:38, 7F
→
03/15 18:40, , 8F
03/15 18:40, 8F
→
03/15 18:42, , 9F
03/15 18:42, 9F
推
03/15 19:38, , 10F
03/15 19:38, 10F